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ABSTRACT

Error correction of noisy reads obtained from high-throughput DNA sequencers is an im-

portant problem since read quality significantly affects downstream analyses such as detection

of genetic variation and the complexity and success of sequence assembly. Most of the current

error correction algorithms are only capable of recovering substitution errors. In this work,

Pindel, an algorithm that simultaneously corrects insertion, deletion and substitution errors

in reads from next generation DNA sequencing platforms is presented. Pindel corrects in-

sertion, deletion and substitution errors by modelling the sequencer output as emissions of an

appropriately defined Hidden Markov Model (HMM). Reads are corrected to the corresponding

maximum likelihood paths using an appropriately modified Viterbi algorithm. When compared

with Karect and Fiona, the top two current algorithms capable of correcting insertion, deletion

and substitution errors, Pindel exhibits superior accuracy across a range of datasets.
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CHAPTER 1. OVERVIEW

Next generation DNA sequencing is a rapidly evolving technology that enables the low cost

and fast determination of the genomic sequences of organisms ranging from viruses to humans.

It is widely used to understand microbial populations and may facilitate technologies such as

personalized medicine. However, current sequencing technologies suffer from one major issue:

they produce relatively short reads with a significant fraction of errors [Jünemann et al. (2013);

Shendure and Ji (2008)]. The correction of sequencing errors is a crucial task in bioinformatics

since the presence of errors significantly interferes with many downstream analyses, including

detection of ultra-rare mutations [Schmitt et al. (2012)], genetic heterogeneity detection [Lou

et al. (2013)], and de novo genome assembly [Nagarajan and Pop (2013); Gordon and Green

(2013); Schulz et al. (2012)].

DNA sequencing operates by randomly breaking many copies of a genome, whose length

may range from thousands to billions of nucleotides, into fragments which are roughly a few

hundred nucleotides long. The starting position of a given fragment is random. Thus, while the

sequencer produces a large number of reads such that each position is read multiple times, there

is no alignment information to indicate which reads cover a given nucleotide. The dominant

error pattern in these reads varies across the different sequencing platforms. The Illumina

platform is known to primarily exhibit substitution errors [Jünemann et al. (2013); Shendure

and Ji (2008)], while platforms such as 454 pyrosequencing, Ion Torrent PGM and PacBio

real-time sequencing exhibit a large number of insertion, deletion (collectively referred to as

indels) and substitution errors [Jünemann et al. (2013); Bragg et al. (2013); Yang et al. (2013);

Loman et al. (2012); Laehnemann et al. (2015)].

It should be emphasized that error correction is different from basecalling[ Merriman et al.

(2012); Kao et al. (2009)] in which the decisions are made only by examining the sequenced
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nucleotides in a given read. Significant research work addresses the design of good basecallers

[Bragg et al. (2013); Merriman et al. (2012); Rothberg et al. (2011)]. In contrast, error correc-

tion aims at correcting the reads that are produced by the basecaller and critically relies on

processing the information from all the reads simultaneously. While it is conceivable that having

access to the raw sequencer output can improve error correction, in this work the basecalls and

corresponding quality scores are modeled instead. This approach provides greater flexibility in

modelling reads originating from different platforms. In addition, the raw sequencer output is

often unavailable or discarded (to conserve space). Therefore, in this work the sequencer and

basecaller pair is called “the sequencer”.

The problem of error correction has received significant attention in recent years (see [Yang

et al. (2013); Laehnemann et al. (2015)]). However, most of the proposed algorithms only

deal with substitution errors. There are only a few methods such as Karect [Allam et al.

(2015)], Fiona [Schulz et al. (2014)], Coral [Salmela and Schröder (2011)] and HSHREC [Salmela

(2010)], that are capable of correcting indels and substitutions. On the other hand, the Illumina

platform does produce indels [Schirmer et al. (2015)], and some popular platforms, e.g. Ion

Torrent, produce reads with significant numbers of indels as well as substitutions.

Finally, third generation sequencing technologies that promise long reads extending to thou-

sands of nucleotides also have the highest error rates, including substantial indel rates [Wang

et al. (2015); Ip et al. (2015)]. In summary, the development of high performance error correc-

tion algorithms that deal with indels and substitutions is an important problem [Laehnemann

et al. (2015)].

Main Contributions of this work

In this work Pindel, a flexible, probabilistic method that addresses the problem of correcting

insertion, deletion and substitution errors in noisy reads is presented. The approach in this

work builds on the basic framework proposed in [Yin et al. (2013b)] for error correction only in

the presence of substitution errors. These are three main technical contributions of this work.

1. An appropriate Hidden Markov Model (HMM) for the emission of reads from the se-

quencer is defined. The problem of correcting substitution errors in a probabilistic set-
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ting is already challenging, as standard implementations of the HMM result in model

estimation problems and poor error correction performance [Yin et al. (2013b)]. Hence,

the consideration of insertion and deletion errors adds significant challenges. In this work

indel errors are modeled by expanding the state space, which was previously restricted

to the kmer-spectrum [Yin et al. (2013b,a)]. The specification of appropriate state tran-

sitions allows the insertion and deletion errors to be effectively modeled.

2. The results on real, publicly available Ion Torrent sequencing datasets demonstrate 7.5%

average improvement (ranging from 1% to 26% on different datasets) in error correction

rates (gains) over Karect [Allam et al. (2015)], the current state of the art error correction

technique, and 32.7% average improvement over Fiona [Schulz et al. (2014)]. However, it

needs to be emphasized that the techniques presented here are not specific to Ion Torrent

and are applicable to any sequencing technology.

In the next section, a review of the relevant background and related work is presented followed

by detailing the proposed HMM in section 3.1. Parameter estimation, modeling choices and the

final error correction step are discussed in section 3.2. Subsequently the proposed method is

compared with Karect and Fiona in section 4.1. Some details about the model, run parameters,

and parameter estimation are discussed in the Appendix.
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CHAPTER 2. REVIEW OF LITERATURE

DNA consists of two directed strands bound in an antiparallel duplex. Let G denote the

first strand of the DNA, which is a quaternary sequence of length |G| over the alphabet B1 =

{A,C,G, T}. The sequencer produces “reads” from short fragments of the genome, either

moving along strand G or in the reverse direction on its reverse complement, G. Thus, the i-th

read is an estimate of a substring si that starts at a random position in either G or G, but the

read contains neither information about the source strand nor starting position.

The full dataset, denoted by R where |R| = r, is the entire set of sequence reads and quality

scores produced by a sequencing experiment. The combined length of all reads is L =
r∑
i=1

li.

A read is the sequencer’s best estimate of a contiguous set of nucleotide bases on one strand

but may contain insertion, deletion or substitution errors relative to the true genome sequence.

The i-th read is the tuple (xi,yi), in which xi is the sequence of bases, called “base calls” in B1,

and yi is its corresponding sequence of quality scores that indicate the sequencer’s confidence

in the basecall. Both xi and yi are of length li.

Error correction of reads is only possible because each base in the genome is typically

covered by multiple reads. If the starting positions of the reads are uniformly distributed along

the genome, each base should be covered on average by L/(2|G|) reads. This is referred to as

the coverage level of the sequencing experiment. High coverage provides good redundancy for

error correction, but the lack of positional information makes the problem challenging.

There are three main approaches for correcting errors in the sequenced reads. Methods

such as Karect [Allam et al. (2015)], [Coral Salmela and Schröder (2011)] and ECHO [Kao

et al. (2011)] use kmers, which are substrings of length k, as “seeds” to form multiple sequence

alignment (MSA) on overlapping reads. Subsequently by creating a consensus, error correction

is performed.
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A large class of methods [Yang et al. (2010); Liu et al. (2013); Kelley et al. (2010); Medvedev

et al. (2011); Heo et al. (2014)] are based on extracting the kmer-spectrum of the observed read

set, i.e. the set of all observed kmers in all the reads. If k is chosen large enough, most of the

true kmers appear in unique locations in the genome (except the ones in repeated portions of the

genome); this is usually referred to as the kmer-uniqueness assumption. Under this assumption,

kmers with small observed counts can be identified as errors and corrections can be attempted.

The methods differ significantly in how they identify erroneous kmers and how exactly they

make decisions about the corresponding correction. It needs to be emphasized at this point

that all these algorithms [Yang et al. (2010); Liu et al. (2013); Kelley et al. (2010); Medvedev

et al. (2011); Heo et al. (2014)] only deal with substitution errors and cannot handle indels. The

proposed algorithm here, Pindel, also belongs to the class of kmer-based methods. However,

as discussed in §3.1 and §3.2.2 there are several novel aspects of the presented approach that

allow for superior performance in the presence of indels.

Finally, suffix tree/array based methods [Schröder et al. (2009); Ilie et al. (2011); Schulz

et al. (2014)] can be considered as generalized variable length kmer based methods. Suffix

trees from the read set, help to identify and correct erroneous kmers using tree nodes with low

weights for a range of kmer length.
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CHAPTER 3. METHODS AND PROCEDURES

3.1 Hidden Markov Modeling of Error Correction

A short overview of how Pindel, the HMM based error correction algorithm, corrects dif-

ferent types of errors is provided in the following. Let S be the set of true sequences that

generates the read set, R. In particular, si ∈ S generates the i-th read (xi,yi), where xi and

yi denote the basecalls and the quality scores. Let si[j] denote the j-th nucleotide of si and

si[j...t] denote the substring of si from position j to position t (inclusive). Similarly substrings,

xi[j...t] or yi[j...t], can be extracted from the observed read or quality scores, though because of

insertions and deletions, the exact correspondence between positions in the hidden si and the

observed xi or yi is not known. Substrings of length k or k + 1 bases are called kmers and

(k+ 1)mers, respectively. Let xi,t = xi[t−k+1...t] be the t-th observed kmer of read xi; therefore

xi,t[j] will be the j-th nucleotide of the t-th kmer, xi,t.

Each read is modeled as an independent emission from the HMM. It is assumed that the

underlying Markov chain starts at state si,k with probability governed by an initial state dis-

tribution. Given the initial state, the sequencer emits k base calls, xi,k, as well as the quality

scores yi,k. Then, the sequencer transitions to a new state, si,k+1 which is either a kmer or

a (k + 1)mer. When the sequencer is at state si,t for t > k, it emits (xi[t],yi[t]). The hidden

state si,t is always responsible for the emission of t-th observed nucleotide xi[t], but may not

correspond to position t of si because of indels. Transitions between a kmer and a (k + 1)mer

model deletion errors, transitions from a kmer to itself model insertion errors and the emission

distribution models the substitution errors. The following example demonstrates the modeling

of the different error types.

Example 3.1.1. Fig. 3.1 shows a situation where k = 4 and the true underlying sequence is



www.manaraa.com

7
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Figure 3.1: Simple example demonstrating how different types of errors are modeled, where the true underlying
sequence is TGCATACG, and the erroneous read is TGCAAAGCG.

TGCATACG. The sequencer transitions through the states si,4, si,5, . . . , si,9. There are two

insertion errors at positions five and six, leading to si,4 = si,5 = si,6 = TGCA. The next

transition to si,7 = GCAT produces a substitution error at the seventh position when base

T is miscalled as G. Next, si,7 transitions to the (k + 1)mer si,8 and consequently the true

base si[6] =A is deleted. Finally, the sequencer transitions to si,9 (a kmer) and emits base G

without any error.

The Markov model is well motivated because in a finite genome and with large kmer size,

most kmers are unique, leading to strong local dependence between kmers. Since the genome is

not observed directly during sequencing, the Markov states are latent variables [Rabiner (1989)].

The strategy in this work is to first fit the parameters of the HMM based on the observed reads.

Then the maximum likelihood state sequence ŝi that best explains each observed read (xi,yi)

is determined and declared as the corrected read. In particular, in the example in Fig. 3.1, the

goal is to recover the maximum likelihood state sequence ŝi,4, . . . , ŝi,9.

There are critical modeling choices that make the presented approach work, and all revolve

around the central notion of a kmer. Ignoring self transitions (insertions) and kmer to (k+1)mer

transitions (deletions), the remaining genomic transitions model the observed kmer to kmer

transitions in the genome. The genome G is finite, and each error-free kmer occurs 0 or some

finite number of times in G. If k is small, the genomic transition probabilities of the HMM

reflect the signal from multiple genomic locations and are not useful for separating genomic

variation from error. Thus, k needs to be large enough to guarantee kmer-uniqueness for

most kmers, but the k required to guarantee all kmers are unique will typically be larger than



www.manaraa.com

8

the read length or result in insufficient coverage to distinguish error and true transitions. In

this work, k is chosen such that it balances the kmer-uniqueness requirement while retaining

sufficient coverage (see §3.2.3). In addition, the following three ideas which result in a solution

with excellent performance are used.

• Only kmers and (k + 1)mers that have been observed in the reads are included in the

state space.

• The resulting state space includes many erroneous kmers, and hence the model is overpa-

rameterized in genomic transition probabilities, so a `0-like penalty is imposed on these

parameters to enforce the belief that most error-free kmers are unique.

• Finally, the coverage is effectively doubled by combining information from both the for-

ward and reverse complement strands of the genome.

In the remainder of this section, the components of the HMM are described in detail.

3.1.1 State Space

The state space of HMM in this work, denoted by K, consists of both kmers and (k+1)mers.

Let us define K1 as the set of all observed kmers in R, as well as their reverse complements.

Similarly, define K2 as the set of observed (k + 1)mers in R, plus their reverse complements.

Each (k + 1)mer ω ∈ K2 is a deletion state, where the penultimate nucleotide, ω[k], is deleted

during sequencing. To model the insertion errors, a specialized insertion copy of ω, denoted by

ω� is introduced. By defining K�1 = {ω� : ω ∈ K1}, the final state space is K = K1 ∪K2 ∪K�1 .

For any k, the underlying true genome G has at most min{2(|G|−k+1), 4k} kmers. Restrict-

ing K1 and K2 to the observed kmers and (k+1)mers inR guarantees that |K1∪K2| � 4k+4k+1.

By including the reverse complements of the observed k/(k+1)-mers, the risk of excluding valid

oligomers in G is reduced, which is a growing possibility when G is sequenced with low or non-

uniform coverage.

The following notation is used in the subsequent discussion. Let B1 = {A,C,G, T} (single
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bases), B2 = {AA, . . . , TT} (all pairs of bases) and {�} (the self transition), then

ω I β =


ω[2+ε(ω)...k+ε(ω)]⊕ β β ∈ B1 ∪ B2

ω� ω ∈ K1, β =�

and ω� I β =


ω[2...k]⊕ β β ∈ B1 ∪ B2

ω� β =�,

where ⊕ is the string concatenation operator and ε(ω) = 1{ω ∈ K2} serves as a (k + 1)mer

indicator function. Thus, if β ∈ B1, ω I β is a kmer, and if β ∈ B2, ω I β is a (k + 1)mer.

3.1.2 Emission Distribution

Let D(ω1,ω2) denote the edit distance between states ω1,ω2 ∈ K with equal costs of one

for insertions, deletions and substitutions. This distance is used to limit the computational

complexity of the proposed algorithm. If si,t is the true state (either a kmer or a (k + 1)mer)

emitting the t-th observed base of the i-th read, xi,t−1 is the (t − 1)-th observed kmer, and

β ∈ B1, then for t > k, the emission distribution is

f(xi,t[k] = β,yi,t[k] | si,t,xi,t−1) = %(yi,t[k] | si,t,xi,t)︸ ︷︷ ︸
quality score model

g(xi,t[k] = β | si,t,xi,t−1)︸ ︷︷ ︸
base emission model

,

in which the base emission model is given by

g(xi,t[k] = β | si,t,xi,t−1) ∝ 1{D(si,t,xi,t−1 I β) ≤ d} · g0(β | si,t[k+ε(si,t)]) (3.1)

with the constraint
∑
β∈B1

g0(β | si,t[k+ε(si,t)]) = 1, for β ∈ B1. The set of possible hidden states

si,t is limited to those within a maximal edit distance to the last observed kmer.

Quality scores potentially inform on the error state of the current base call. The emission of

a quality score is modelled by four different probability mass functions (pmfs) supported on the

integers {qmin, . . . , qmax}, where qmin and qmax are the minimum and maximum quality score

values reported by the sequencer. The datasets which were used in the experiments within

this work use Phred+33 quality scores, which consist of about 40 distinct quality scores. In

particular, the first pmf %1 models quality scores for bases emitted without error, %2 models

quality scores accompanying substitution errors, %3 models quality scores for bases emitted

after a deletion error, and %4 is for quality scores of inserted nucleotides. Specifically, the
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quality emission distribution is

%(yi,t[k] | si,t,xi,t) =



%1(yi,t[k]) if xi,t[k] = si,t[k], si,t ∈ K1, ϕ(si,t) = 0

%2(yi,t[k]) if xi,t[k] 6= si,t[k], si,t ∈ K1, ϕ(si,t) = 0

%3(yi,t[k]) if si,t ∈ K2, and

%4(yi,t[k]) if si,t ∈ K1, ϕ(si,t) = 1,

where ϕ(si,t) = 1{si,t ∈ K�1 } is an indicator of insertion copy kmers.

The emission of the first k bases and quality scores of a read is handled differently. Here,

the fact that error rates tend to be low at the beginning of reads is exploited and no indel

errors are assumed to exist among the first k emitted bases and the first k quality scores are

not modeled. Furthermore, it is assumed that si,k ∈ K1 is a kmer. Then,

f(xi,k | si,k) ∝ 1{DH(si,k,xi,k) ≤ dk},

where DH(·, ·) is the Hamming distance and parameter dk < d. The values of d and dk

determine the computational complexity of the parameter estimation and sequence decoding.

Their choices are discussed in §3.2.3.

3.1.3 Transition Probability Distribution

The transition between state si,t and adjacent state si,t+1 is governed by probability distri-

bution p (ω I β | ω) for ω ∈ K, β ∈ B = B1 ∪ B2. Throughout this work the transition from ω

to β is interchangeably refered to as ω → β or ω → ν, where ν = ω I β.

The transition probability is defined in terms of kmer-to-kmer transition probabilities q(β |

ω) defined for ω ∈ K1 ∪ K�1 and β ∈ B1 (ω� ∈ K�1 shares the same parameters q(·|ω) with

its non-insertion copy ω). Nonzero q(· | ·) represent true transitions in the genome. To induce

additional sparseness in transitions and assuming reasonable coverage, all transitions ω → β

are required to be observed at least once. For this purpose, TK1 (ω) is defined for all ω ∈ K1,

as the subset of β ∈ B1 such that either ω → β or ω I β → ω[1] (ω denotes the reverse

complement of ω) is observed in at least one read in R. Then,∑
β∈TK1

(ω)

q(β | ω) = 1 (3.2)
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and q(β | ω) = 0 for β /∈ TK1 (ω). Given q(· | ·) and defining ω1+ε.. = ω[1 + ε(ω)..k + ε(ω)] as

the k-suffix of ω, the transition probability distribution is

p(ω I β | ω) =



(
1− pd − pi · 1{ω∈K1}

)
· q(ω I β | ω1+ε..) if β ∈ B1

pd · q(ω I β[1]|ω) · q ((ω I β[1]) I β[2] | ω1+ε.. I β[1]) if β ∈ B2

pi · 1{ω∈K1} if β =�

(3.3)

where pd is the deletion error probability and pi is the probability of kmer self transition

(insertion error). While transition probability p(· | ·) estimates a mix of signal from the genome

and indel errors of the sequencer, the q(· | ·) represent pure, genomic transition probabilities.

The properties of these transitions are discussed in what follows.

3.1.4 Modeling dependence between strands.

Both forward G and reverse strands G of the genome are sequenced. If the strands are

sequenced with equal coverage, the probability of observing ω → ν on one strand must equal

the probability of observing ν → ω on the reverse strand. This observation allows us to halve

the total number of state transition parameters and initial state distribution parameters in the

model.

Let π(ω) denote the probability of starting a read in state ω. Here, it was assumed there

are no indels in the first k bases of a read, so only states in K1 have nontrivial initial state

probabilities. Under the assumption of equal coverage on both strands the following equations

hold

π(ω) = π(ω) and π(ω) · q1(ν [k] | ω) = π(ν) · q2(ω[k] | ν) (3.4)

for all ω,ν ∈ K1. Transition parameters are subscripted by 1 for the first strand and 2 for

the reverse complement strand. Although the strands of a kmer are unknown, these parameter

relationships can be beneficial. Let ω̃ represent the lexically ordered pair ω and its reverse

complement ω and let π(ω̃) unambiguously identify the initial state probability π(ω) = π(ω).

In addition, a consistent method is required to label transitions such that when ω → ν is

labeled 1, ν → ω is labeled 2. Then, transitions on strand 2 are functions of the transitions on
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strand 1 as

q2(ω[k] | ν) =
π(ω̃) · q1(ν [k] | ω)

π(ν̃)
. (3.5)

A labeling procedure is described in [Yin (2016)] where all outgoing transitions from the

same kmer share the same label, a crucial choice that leads to a tractable M-step during HMM

parameter estimation. Thus, kmers rather than transitions are labeled, and L(ω) can be defined

as the label of ω. Specifically, L(ω) = 1 implies that all transitions q(β | ω) for β ∈ TK1 (ω)

carry label 1. Furthermore, the aforementioned labeling algorithm also requires the value of k

to be even (see [Yin (2016)]).

There is more than one way to accomplish such a labeling and in fact different labelings will

result in different error correction performances. Suppose that k = 4 and the true transition

(CCAA → CAAG) is observed 50 times and the erroneous transition (CCAA → CAAC) only

once on the forward strand. The corresponding transitions on the reverse complement strand

are such that kmers GTTG and CTTG only have unique transition into the kmer TTGG. In

this case, by assigning L(CCAA) = 1, the model parameters will be q1(G | CCAA) and q1(C |

CCAA) and the second (erroneous) transition should be driven to zero in the penalized estima-

tion procedure. On the other hand, by setting L(CCAA) = 2, then L(CTTG) = L(GTTG) = 1

and the erroneous kmer GTTG on the reverse strand transitions only to kmer TTGG. The

penalty fails to drive q1(G | GGTG) to zero since transition probabilities q1(· | GGTG) must

sum to one. This example demonstrates that label assignments have the potential to impact

error correction. This issue is discussed further in [Yin (2016)] and the labeling algorithm is

explained.

3.2 Parameter Estimation, Viterbi Decoding and Model Choices

Pindel was implemented in C/C++. The major components of Pindel, including the

construction of the k spectrum, the EM algorithm, and the Viterbi decoding are parallelized

using OpenMP for shared memory computers. Some details of the major steps are discussed

in the following.
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3.2.1 HMM parameter estimation

For large k, most kmers ω become unique in the genome, and the genomic transition distri-

butions q1(· | ω) should become degenerate, i.e., have only one non-zero transition probability

with value 1. However, since there is no independent method to distinguish true transitions

from error transitions, the model is formulated with many non-zero transitions that do not

exist in the genome. Fortunately, if errors are rare and k is large, most error transitions will

be observed relatively fewer times than true transitions. This signal from the data can be

capitalized to eliminate erroneous transitions and sparsify q1(· | ·).

Subsuming all emission and transition parameters in vector θ, one would normally maximize

the log likelihood, l(θ | R), of observing the read set R given θ to produce parameter estimates

θ̂. To enforce the belief that most kmers are unique in the genome, an `0-like penalty is

incorporated on the genomic transition probabilities. Subsequently, a penalized log-likelihood

function l(θ | R)− ρJ (θ) is maximized over θ, where the term J (θ) is

J (θ) =
∑

ω: ω∈K1
L(ω)=1

∑
β∈TK1

(ω)

log[1 + q1(ω I β|ω)/γ], (3.6)

and constants γ and ρ are chosen to achieve a desired level of sparsity in the transition probabil-

ities [Alexander and Lange (2011)]. Briefly, when γ is tiny, the parameter ρ defines a threshold

such that when the expected number of transitions ω → β exceeds ρ, then parameter q1(β | ω)

is approximately set equal to the corresponding maximum likelihood estimator. On the other

hand, if the expected number of transitions is less than ρ, then q1(β | ω) is pushed to 0 (see

[Yin (2016)]).

3.2.2 Viterbi Decoding and Error Correction

Once the parameters θ̂ are estimated from the data, error correction is achieved by running

the Viterbi algorithm. It was noticed that a straightforward application of the usual Viterbi

algorithm fails to identify many insertions in the data sets used in this work. Therefore a

modified Viterbi is described in this section.

Ion Torrent sequencers occasionally produce reads that contain significantly long bursts of

consecutive insertion errors. For instance, in datasets D3,D4,D5,D6 from Table 4.1, about
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9% of insertion errors appear as insertion blocks over 10 nucleotides long. Modeling such long

insertions is computationally expensive because it strikingly increases the number of plausible

hidden pathways. The distance constraint in Eq. (3.1), which insures computational tractabil-

ity, specifically disallows such long insertions. Fortunately, while long insertions account for

many individual insertion errors, they are infrequent, so their exclusion during parameter esti-

mation has negligible effect on parameter estimation. For instance, only about 0.26% of reads

in D2, have consecutive insertion errors longer than 10. Yet recovering these errors is essential

for performance, so a modified Viterbi algorithm that can correct long insertions is proposed.

In particular, the edit distance constraint imposed in Eq. (3.1) is modified during the Viterbi

decoding as follows.

f(xi,t[k] = β,yi,t[k] | si,t,xi,t−1) =

1

{
{ϕ(si,t)} ∪ {si,t[k] = β and β ∈ B1} ∪ {D(si,t,xi,t−1 I β) ≤ d}

}
×

g0(β | si,t[k+ε(si,t)])%(yi,t[k] | si,t,xi,t). (3.7)

The modified indicator function takes the value 1 if si,t is an insertion copy kmer or if there is a

match between si,t[k] and the emitted base β or if the original constraint in Eq. (3.1) is met. Now,

during Viterbi decoding, state sequences with repeated self-transitions are allowed, regardless of

the edit distance. Once such a long insertion is decoded, it is likely that D(si,t,xi,t−1 I β) ≥ d.

If this happens, to return to a valid pathway it is required that the kmer si,t to emit the

observed base β; otherwise, there may not exist a valid pathway to explain the read.

To address the limited capability of error-correction within the first kmer, which is assumed

to contain no indel errors, the Viterbi algorithm is run in both directions to estimate the “true

sequence” si given the read pair (xi,yi). In the first run, ŝ′i is decoded given the read pair

(xi,yi). Next, it runs on read pair
(
ŝ′i, rev(yi)

)
, where ŝ′i is the reverse complement of the first

estimate of the true sequence and rev(yi) are the quality scores in reverse order. The decoded

sequence after the second decoding, ŝi, produces the final estimated sequence of true states ŝi.

3.2.3 Parameter Choices

The most important parameter to choose for Pindel is the kmer length, k. As discussed ear-

lier, the choice of k should encourage kmer uniqueness while retaining sufficient kmer coverage.
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Figure 3.2: Example with k = 8, d = 4 where there are insertion errors at positions 10 - 14, but no errors prior to

position 10. A possible state sequence encountered in the decoding is shown. States si,10 − si,12 are self-transitions with

D(si,12,xi,12) = 4. However, D(si,13,xi,13) = 6 and such a state would be disallowed under Eq. (3.1). However, it

is allowed under the modified Eq. (3.7). Similarly, after decoding the insertion burst, D(si,14,xi,14) = 6, the next few

transitions have to be such that si,t, 15 ≤ t ≤ 17 emits the observed base. A substitution error is allowed at t = 18 as

D(si,18,xi,18) = 4.

Another constraint on k comes from the fact that the labeling algorithm that marks the free

and dependent transition parameters requires k to be even. Finally, k is limited to a maximum

value of k = 30 on 64-bit machines. To satisfy the uniqueness assumption, k is chosen according

to the heuristic |2G|
4k
≈ 10−5 inspired by [Kelley et al. (2010); Heo et al. (2014)].

The next set of parameters to choose are ρ and γ. Specifically, in the EM algorithm if the

expected count of transition ω → ν is above ρ, then it will be retained, but if it is below ρ, the

penalty function J (θ) will likely drive it zero. The parameter γ determines the severity of the

penalty, i.e., how close it is to a `0-penalty (see [Yin (2016)]). γ = 1× 10−20 was used for the

experiments in this work. For each dataset, ρ was chosen such that it equals the first valley in

the kmer counts histogram [Liu et al. (2013)].

The parameter d in Eq. (3.1) is chosen based on the computational complexity the proposed

algorithm can handle. It was set to d = 10 for the experiments presented in this work, i.e.,

half of the kmer length and dk = 2 was used. The EM is terminated when the relative change

in penalized log likelihood is less than 10−4. The parameters used for initializing the EM

algorithm are discussed in the Appendix (§A2.3).
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CHAPTER 4. EXPERIMENTAL RESULTS

4.1 Experimental Results

The proposed method was evaluated on six Ion Torrent sequencing datasets listed in Ta-

ble 4.1. For all six datasets, the reference genome is known a priori, allowing us to directly

compare the performance of the different algorithms. The “ground truth” errors are deter-

mined by aligning the reads to the reference genome using the bwa mem algorithm provided by

the BWA aligner (v0.7.12) [Li and Durbin (2010)]. The bwa mem algorithm, with its default

parameters, tends to clip the low-quality ends of the reads, resulting in an underestimation of

the total number of errors.

Therefore, to have an accurate comparison, especially in reads with high error rates,

this clipping behavior was suppressed by specifying a large clipping penalty, with option

-L 100,100, and all other settings were left at default. All reads with a unique match to

the reference genome (total length La) were retained and the number of true errors (e) was

tallied as the mismatches between the selected reads and the reference sequence; adjacent in-

sertions and deletions in the reads were counted as separate errors. The respective error rates,

e/La, for D1 . . .D6, are available in Table 4.1.

Using the rules discussed in §3.2.3, k = 20, ρ = 1 were used for D1 and D6, ρ = 2 for D4 and

D5 and ρ = 4 for D2 and D3. These values of ρ are appropriate considering the corresponding

coverage levels (Table 4.1).

The performance of the proposed algorithm, Pindel, is compared to Karect, the current

state of the art error correction algorithm, and Fiona which is the next top-performer among

algorithms able to correct indels [Allam et al. (2015)], on these six datasets. For Karect,

its latest version on GitHub was used (commit ba3ad54). Karect was run with its default
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Table 4.1: The Ion Torrent sequencing datasets used in the performance analysis

Dataset Coverage Error rate Read Length (Average) |R| Source

D1 7.68× 1.48% 16 - 107 (92) 390 976 ERR039477∗

D2 33.9× 0.94% 12 - 636 (324) 494 921 B22-730†

D3 30× 0.95% 25 - 629 (367) 385 452

Ion 520 Chip

E. coli 400bp Run‡
D4 10× 0.95% 25 - 588 (366) 128 484

D5 10× 0.95% 25 - 501 (367) 128 484

D6 5× 0.95% 25 - 509 (366) 64 242

For all datasets, the reference genome is E. coli DH10B, which is of length 4 686 137 nucleotides.
*: accession number on Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra).
†: available from the Ion Torrent website (http://ioncommunity.lifetechnologies.com/welcome).
‡: D3 −D6 are randomly subsampled versions of a high-coverage 584.1× dataset, available from the Ion
Torrent website.

parameters, except setting -matchtype=edit, -celltype=haploid, which are appropriate for

the six datasets. To run Fiona (v0.2), the genome length and error rates in Table 4.1 were

provided using the -g and -e options, while leaving other settings at default.

http://www.ncbi.nlm.nih.gov/sra
http://ioncommunity.lifetechnologies.com/welcome
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Table 4.2: Performance comparison of Pindel, Karect and Fiona on Ion Torrent datasets

Dataset Method Gain Gain (I) Gain (D) Gain (S) Error-free Reads%

Before After

D1

Pindel 0.8806 0.9373 0.7640 0.9245

54.01%

87.10%

Karect 0.6211 0.7199 0.6335 0.5041 85.38%

Fiona 0.3759 0.4124 0.4647 0.2572 78.91%

D2

Pindel 0.9489 0.9710 0.9078 0.9548

20.28%

86.89%

Karect 0.9297 0.9706 0.9070 0.8731 90.13%

Fiona 0.6930 0.7391 0.7435 0.5333 74.65%

D3

Pindel 0.9771 0.9875 0.9700 0.9712

19.82%

98.96%

Karect 0.9675 0.9879 0.9683 0.9206 95.57%

Fiona 0.7425 0.7773 0.7756 0.5881 77.46%

D4

Pindel 0.9700 0.9874 0.9622 0.9558

19.84%

89.90%

Karect 0.9334 0.9738 0.9177 0.8815 89.22%

Fiona 0.6760 0.7114 0.7046 0.5310 72.61%

D5

Pindel 0.9689 0.9860 0.9578 0.9570

19.87%

89.19%

Karect 0.9336 0.9752 0.9127 0.8908 88.54%

Fiona 0.6743 0.7079 0.7031 0.5321 72.39%

D6

Pindel 0.9166 0.9427 0.9095 0.8759

19.93%

78.59%

Karect 0.8265 0.8906 0.8004 0.7477 76.85%

Fiona 0.5343 0.5714 0.5407 0.4381 57.90%

Gain (I)/(D)/(S) are the gain metrics regarding insertion, deletion and substitution errors respectively.
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CHAPTER 5. SUMMARY AND DISCUSSION

It can be observed that Pindel corrects more errors than both Karect and Fiona on all the

datasets, as measured both by gains and percentages of error-free reads after error correction,

with the sole exception on D2, where Karect outperforms Pindel in terms of the latter metric.

The margin of improvement is largest for D1, where the average read length is shorter than

the other datasets. Note that having shorter read lengths deteriorates the performance for

all methods, however Pindel is less sensitive to decreasing read lengths than alignment-based

methods which rely on the read overlap sizes. All methods display increased performances as

the coverage increases. The hypothesis is that Pindel is more resilient to low coverage because

the performance gap increases as the coverage decreases.

Pindel has better gains than competing methods for all categories of errors (Table 4.2).

Despite the fact that Pindel only models non-consecutive deletion errors, it corrects more dele-

tions than Karect and Fiona on all six datasets. The reason is that the majority of consecutive

deletion errors occur in homopolymers. As long as there are no more than d lh2 e deletion errors

in a homopolymer, where lh is the homopolymer length in the true genomic sequence, Pindel

can address such deletion errors by reinterpreting the consecutive deletions as isolated, single

deletion errors. In §3.2.2 the necessity of a modified Viterbi algorithm in order to handle long

insertion errors was discussed. This modified Viterbi algorithm increased the overall gain for

Pindel by 6.5% on average.

Finally, the sensitivity of Pindel’s performance to the choice of k on various datasets is

discussed (see §A1). Overall, Pindel’s performance is highly robust with respect to the kmer

length, especially when the average read length is considerably larger than k.
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APPENDIX A. ADDITIONAL MATERIAL
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Appendix

A1 Robustness analysis

16 18 20 22 24 26 28 30
0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

Kmer Length

P
in

de
l G

ai
n

 

 

Pindel Gain on D
1

Pindel Gain on D
6

Figure A1: Pindel’s gains on datasets D1, D6, for kmer length = {16, 18, . . . , 30}, and fixed k
D = 2.

The plot shows Pindel outperforms Karect’s gains of 0.6211 and 0.8265 on D1 and D6 for all k =
{16, 18, . . . , 30}.

In §3.2.3, a heuristic is proposed to choose an appropriate k that induces kmer-uniqueness,

while retaining sufficient redundancy. To study the fluctuations of performance around the

choice of k, a robustness analysis of Pindel’s performance with respect to k was performed on

datasets D1 and D6. Pindel ran on both datasets, with even k ranging from 16 to 30, with

d = k
2 and all the other tuning parameters fixed to the values specified in §3.2.3.

As can be observed from Fig. A1, Pindel’s gain fluctuates from about 0.82 to 0.87 for

D1, and from about 0.89 to 0.92 for D6, with the peak performances obtained at k = 18 and

k = 20 for D1 and D6 respectively. While these variations are noticeable, for all evaluated

k values, Pindel outperforms Karect with sizeable margins on both datasets, indicating the

overall robustness of performance with regard to the choice of k.
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Pindel’s performance is fairly stable for k between 18 and 30 on dataset D6, whereas it

gradually declines on dataset D1. It can be hypothesized that the two contrasting performance

trajectories are largely attributed to the difference in the average read length, li between the

two datasets. That is, when li is more comparable to the typical values of k, the increment in

k results in more drastic decline in the redundancy. For instance, increasing k from 18 to 30

results in 16% less kmers per read when li = 92 (D1), but only 3.4% less kmers when li = 366

(D6).

A2 EM Derivations

In this section, an expectation-maximization algorithm that iteratively maximizes the pe-

nalized log-likelihood function is derived.

A2.1 E step

Let θ denote the vector all model parameters, and let S denote the set of true genomic

sequences that generate R. Then, define `c(θ | R,S) as the complete-data log-likelihood.

To evaluate the conditional expectation of the complete-data log-likelihood, the following

is defined.

N dk
H (xi,k) ={ω : ω ∈ K1, DH(ω,xi,k) ≤ dk}, (A1)

N d(xi,t) ={ω : ω ∈ K, D(ω,xi,t) ≤ d},

where NHdk(xi,k) and N d(xi,t) are respectively referred to as the Hamming and edit distance

neighborhoods of the observed kmer xi,k and xi,t.

For the E-step, it is required to evaluate the conditional expectation of the above complete-

data log-likelihood, Q(θ,θ∗), which is,
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Q(θ,θ∗) = QI(θ,θ
∗) +QT (θ,θ∗) +QE(θ,θ∗)

=

r∑
i=1

∑
ω∈N dk

H (xi,k)

log π(ω̃) · ζi,k(ω)

+
r∑
i=1

li−1∑
t=k

∑
ω∈N d(xi,t), β∈B

log p(ω I β | ω) · ξi,t(ω,ω I β)

+

r∑
i=1

li∑
t=k+1

∑
ω∈N d(xi,t)

log f(xi,t[k],yi,t[k] | ω,xi,t−1) · ζi,t(ω), (A2)

where Q(θ,θ∗) has been partitioned into three components corresponding to the contributions

from the initial state distribution, the transition distribution and the emission distribution. In

Eq. (A2), the quantities ζi,t(ω) and ξi,t(ω,ω I β) are for the probabilities of the hidden states

at each position in each read,

ξi,t(ω,ν) = P (si,t = ω, si,t+1 = ν | xi,yi,θ∗) ,

ζi,t(ω) = P (si,t = ω | xi,yi,θ∗) ,

given the current parameter vector θ∗.

A2.2 M step

The objective function to be maximized in the M-step is Q̃(θ,θ∗) = Q(θ,θ∗) − ρJ (θ) −∑
ω∈K1:L(ω)=1

λω

(∑
β∈TK1

(ω) q1(ω I β | ω)− 1
)

. Now let us discuss the estimation of the indi-

vidual parameters.

MLEs of pd and pi.

Since the `0-penalty ρJ (θ) and the equality constraint do not involve pd and pi, the objective

function to maximize, with regard to pd and pi is simply QT (θ,θ∗). And QT (θ,θ∗) can be

expanded into,
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QT (θ, θ∗) =

r∑
i=1

li−1∑
t=k

∑
ω∈Nd(xi,t),

β1∈B1

[log(1− pd − pi) + log q(ω I β1 | ω1+ε..)] · ξi,t(ω,ω I β1)

+

r∑
i=1

li−1∑
t=k

∑
ω∈Nd(xi,t),

β2∈B2

[
log pd + log q(ω I β2[1] | ω1+ε..) + log q

(
(ω I β2[1]) I β2[2] | ω I β2[1]

)]
· ξi,t(ω,ω I β2)

+

r∑
i=1

li−1∑
t=k

∑
ω∈(K1∪K�

1 )∩Nd(xi,t)

log pi · ξi,t(ω,ω�), (A3)

where q(·|ω) denotes q1(·|ω) if L(ω) = 1, and q2(·|ω) if L(ω) = 2. For completeness, (ω�)� =

ω� is also defined.

Taking the partial derivative of Q(θ, θ∗) with respect to pd, pi and setting them to 0, we

get the following.

p̂i ∝
r∑
i=1

li−1∑
t=k

∑
ω(K1∪K�

1 )∩N d(xi,t)

ξi,t(ω,ω
�) (A4)

p̂d ∝
r∑
i=1

li−1∑
t=k

∑
ω∈N d(xi,t),β2∈B2

ξi,t(ω,ω I β2) (A5)

MLEs of g0(., .) and %(.).

To estimate the emission parameters, which are only involved in QE(θ,θ∗), it can be seen

that,

QE(θ, θ∗) =
r∑
i=1

li∑
t=k+1

∑
ω∈N d(xi,t)

log f(xi,t[k],yi,t[k] | ω,xi,t−1) · ζi,t(ω)

=

r∑
i=1

li∑
t=k+1

∑
ω∈N d(xi,t)

log g0(xi,t[k] | ω[k+ε(ω)]) · ζi,t(ω)

+
r∑
i=1

li∑
t=k+1

∑
ω∈N d(xi,t)

log %·(yi,t[k] | ω,xi,t) · ζi,t(ω). (A6)

It follows that by taking the partial derivative of the above equation with respect to g0(., .) and

%·(.), and setting them to zero, the following MLEs of the emission parameters can be derived

ĝ0(β|α) ∝
r∑
i=1

li∑
t=k+1

∑
ω∈N d(xi,t)

1{ω[k + ε(ω)] = α,xi,t[k] = β} · ζi,t(ω), (A7)
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%̂1(τ) ∝
r∑
i=1

li∑
t=k+1

∑
ω∈N d(xi,t)

1{xi,t[k] = ω[k],ω ∈ K1,yi,t[k] = τ} · ζi,t(ω), (A8)

%̂2(τ) ∝
r∑
i=1

li∑
t=k+1

∑
ω∈N d(xi,t)

1{xi,t[k] 6= ω[k],ω ∈ K1,yi,t[k] = τ} · ζi,t(ω), (A9)

%̂3(τ) ∝
r∑
i=1

li∑
t=k+1

∑
ω∈N d(xi,t)

1{ω ∈ K2,yi,t[k] = τ} · ζi,t(ω), (A10)

%̂4(τ) ∝
r∑
i=1

li∑
t=k+1

∑
ω∈N d(xi,t)

1{ω ∈ K�1 ,yi,t[k] = τ} · ζi,t(ω). (A11)

MPLE of q1(ν | ω).

In order to estimate the transition probabilities q1(ν | ω), the objective function needs to

be maximized

Q̃T (θ,θ∗) = QT (θ,θ∗)− ρJ (θ)−
∑

ω∈K1:L(ω)=1

λω

 ∑
β∈TK1

(ω)

q1(ω I β | ω)− 1

 .

For simplicity of notation, let us define, for t > k,

N d
⊗,1 (xi,t) =

{
(ω,ν) ∈ N d(xi,t)×N d(xi,t+1) : ε(ν) = 0,ν = ω I β, β ∈ TK1 (ω)

}
, (A12)

which contains all pairs (ω,ν) such that there exists a kmer-to-kmer transition ω1+ε.. → ν.

Similarly, for t > k, define

N d
⊗,2 (xi,t) =

{
(ω,ν,µ) : (ω,ω′) ∈ N d(xi,t)×

{
ω∗ ∈ N d(xi,t+1) : ε(ω∗) = 1

}
,

ν = ω I ω′[k],ω′[k] ∈ TK1 (ω1+ε..) ,µ = ν I ω′[k+1],ω′[k+1] ∈ TK1 (ν)

}
,

(A13)

which considers all k/(k + 1)mer-to-(k + 1)mer transition pairs factored into two consecutive

kmer transitions.
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Using the above notation, we have the following,

Q̃T (θ, θ∗) =

r∑
i=1

li−1∑
t=k

∑
(ω,ν)∈N d

⊗,1(xi,t)

[
log(1− pd − pi) + 1{L(ω) = 1} · log q1(ν | ω1+ε..)

+ 1{L(ω) = 2)} ·

(
log q1(ω1+ε.. | ν)− log π(ω̃1+ε..) + log π(ν̃)

)]
· ξi,t(ω,ν)

(A14)

+
r∑
i=1

li−1∑
t=k

∑
(ω,ν,µ)∈N d

⊗,2(xi,t)

[
log pd

+ 1{L(ω) = 1} log q1(ν | ω1+ε..) + 1{L(ν) = 1} log q1(µ | ν)

+ 1{L(ω) = 2)}
(

log q1(ω1+ε.. | ν)− log π(ω̃1+ε..) + log π(ν̃)

)
+ 1{L(ν) = 2}

(
log q2(ν | µ)− log π(ν̃) + log π(µ̃)

)]
· ξi,t(ω,ω I µ[k−1...k])

(A15)

+ c

− ρ
∑

ω∈K1:

L(ω)=1

∑
β1∈TK1

(ω)

log[1 + q1(ω I β1|ω)/γ]−
∑

ω∈K1:

L(ω)=1

λω

 ∑
β1∈TK1

(ω)

q1(ω I β1 | ω)− 1

 ,

(A16)

where c are some constant (related to self transition) that does not involve q1(· | ·). In the above

equation, the two components in (A14) and (A15) respectively correspond to the k/(k+1)mer-

to-kmer transitions, and the k/(k + 1)mer-to-(k + 1)mer transitions.
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Therefore,

∂

∂q1(ν | ω)
Q̃T (θ, θ∗) =

1

q1(ν | ω)

[
r∑
i=1

li−1∑
t=k

ξi,t(ω,ν) + ξi,t(ν,ω)

+
r∑
i=1

li−1∑
t=k

∑
β2∈B2

ξi,t(ω,ω I β2) · 1{ω I β2[1] = ν, β2[1] ∈ TK1 (ω)}

+
r∑
i=1

li−1∑
t=k

∑
β2∈B2

ξi,t(ν,ν I β2) · 1{ν I β2[1] = ω, β2[1] ∈ TK1 (ν)}

+

r∑
i=1

li−1∑
t=k

∑
β2∈B2,

µ∈N d(xi,t)

ξi,t(µ,µ I β2) · 1{µ I β2[1] = ω} · 1{(µ I β2[1]) I β2[2] = ν}

· 1 {β2[1] ∈ TK1 (µ) , β2[2] ∈ TK1 (ω)}

+

r∑
i=1

li−1∑
t=k

∑
β2∈B2,

µ∈N d(xi,t)

ξi,t(µ,µ I β2) · 1{µ I β2[1] = ν} · 1{(µ I β2[1]) I β2[2] = ω}

· 1 {β2[1] ∈ TK1 (µ) , β2[2] ∈ TK1 (ν)}

]

− ρ 1

γ + q1(ν | ω)
− λω

=
1

q1(ν | ω)
ξ̃ (ω,ν)− ρ 1

γ + q1(ν | ω)
− λω. (A17)

Subsequently, the maximum penalized likelihood estimator (MPLE) for q1(ν | ω) is derived as

the following.

̂q1(ν | ω) =
ξ̃ (ω,ν)− γλω − ρ

2λω
±

√(
γλω + ρ− ξ̃ (ω,ν)

)2
+ 4γλω

(
ξ̃ (ω,ν)

)
2λω

,

where ξ̃ (ω,ν) is the summation term in the square brackets of Eq. (A17), and the value of the

Lagrange multiplier λω is determined by numerically solving the equation∑
β′∈B1

̂q1(ω I β′|ω) = 1. (A18)

For tractability of the M-step, which involves solving the equation (A18) numerically, all out-

going transitions of the same kmer need to have the same label, which explains why kmers

were labeled instead of individual transitions.
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A2.3 Initialization of the EM

Provided that errors are scarce, the kmer-to-kmer transition probabilities q1(· | ·) are ini-

tialized based on the observed information in R. Specifically, for every kmer ω ∈ K1 with

L(ω) = 1, the incidence n(β | ω) of transition ω → β in R, for β ∈ TK1 (ω) is counted. By

defining ñ(β|ω) = n(β | ω) + n(ω[1] | ω I β), ñ(β|ω) is the observed number of times ω → β

as witnessed by both strands. q1(β | ω) is initialized using the M-step update (see §A2.2),

plugging-in the observed counts ñ(β | ω) as if they were the expected counts computed in the

E-step, to induce sparsity in the parameter space. To initialze the initial state distribution,

the same observed counts were utilized. For ω ∈ K1, if ω̃ is the lexically smaller kmer between

(ω,ω), then

π(0)(ω̃) ∝
∑

β∈TK1
(ω̃)

n(β | ω̃) +
∑

β∈TK1(ω̃)

n(β | ω̃).

It follows that the dependent kmer-to-kmer transition probabilities q2(· | ·) can be initialized

using Eq.(3.5). Finally, to finish the initialization of p(ω I β | ω), p
(0)
i = p

(0)
d = 1

3 were used.

For the emission parameters, the initialization was as follows,

g
(0)
0 (β | β′) = 1{β = β′} · 0.99 + 1{β 6= β′} · 0.01

3
, β, β′ ∈ B1,

%
(0)
j (y) =

1

Nq
, qmin ≤ y ≤ qmax, j = 1, . . . , 4,

where Nq is number of distinct quality scores observed in R.
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